General Instruction:

1. All questions are compulsory.
2. The question paper consists of 14 questions divided into three sections A, B and C. Section A comprises of 4 questions of one mark each. Section B comprises of 7 questions of four marks each and Section C comprise of 3 questions of six marks each.
3. Use of calculators is not permitted.

SECTION ' A '

1. Find the number of non empty subsets of the set $\{1,2,3,4\}$
2. A wheel makes 180 revolutions per minute. Through how many radians does it turn in 1 second?
3. Solve $|4 x-3|<27$
4. Write the general solution of $\sin ^{2} 2 \theta=0$

SECTION 'B'

5. Prove that $5^{2 n}-1$ is divisible by 24 , using principle of mathematical induction for all $n \in N$
6. Prove by using principle of mathematical induction $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=n+1$ for all $\mathrm{n} \in \mathrm{N}$
7. Prove that $\cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{\sqrt{3}}{16}$
8. Show that $\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \theta}}}=2 \cos \theta$
9. Let $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,3,4\}, B=\{2,4,6,8,10\}, C=\{3,4,5,6\}$
i) Find $(B-C)^{c}$
ii) Verify that $(A \cap B)^{c}=A^{c} \cup B^{c}$
10. Using properties of sets prove that
i) $A \cup(A \cap B)=A$
ii) $A \cap(A \cup B)=A$
11. The cost and revenue functions of the product are given by $\mathrm{C}(x)=2 x+400$ and $\mathrm{R}(x)=6 x+20$ respectively, where x is the number of items produces by the manufacturer. How many items the manufacturer must sell to realize some profit?

SECTION 'C'

12. In a town of 10,000 families, it was found that 40% families buys newspaper A, 20% families buy newspaper B, and 10% families buy newspaper C, 5% buy newspaper A \& B, 3\% buy newspaper B \& C and 4\% buy newspaper A \& C .If 2% families buy all three newspapers, then find the number of families which buy newspaper
i) A only, ii) at least one of the three papers, iii) none of $A, B \& C$.
13. Solve: $x+2 y \leq 3,3 x+4 y \geq 12, x \geq 0, y \geq 1$ graphically.
14. In any triangle $\triangle \mathrm{ABC}$, prove that: $\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C=0$
